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Motivation
• Standard subset iterative PET reconstruction algorithms suffer 

from limit cycle behaviour and non-convergence

• This behaviour can lead to significant variations between 
sequential image updates

• Stochastic variance reduction algorithms can reduce the impact 
of these variations by computing a pseudo-full gradient at each 
update
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Background
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Objective Function

Log-Likelihood
𝐿(𝑥; 𝑦) = 𝑦𝑙𝑜𝑔 +𝑦 − +𝑦

+𝑦 = 𝐴𝑥 + 𝑏

!𝑦 – Expected data

𝐴 – System matrix

𝑏 – Background 
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Background

Φ 𝑥 = 𝐿(𝑥; 𝑦) − 𝛽𝑅(𝑥)

1 Nuyts et. al (2002), 2Tsai et al (2020)

Relative Difference Prior1
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#∈𝒩", #'!

𝜅̂! 𝜅̂#
𝑥! − 𝑥# (

𝑥! + 𝑥# + 𝛾 𝑥! − 𝑥#

𝜅̂! 𝜅̂# - spatially variant penalty strengths2
𝛾 – edge preservation hyperparameter (𝛾=2)

𝑥 – Image estimate
𝑦 – Measured data

𝛽 – Penalty strength



Update Equation
𝑥!"# = 𝑃" 𝑥! + 𝛼!𝐷$ 𝑥! ∇Φ$ 𝑥!

𝑚 – subset number
𝑘 – iteration number
𝑃# ⋅ − non-negativity constraint
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diag ⋅ − an operator to construct a diagonal matrix

Background

1De Pierro et. al. (2001), 2Ahn et. al. (2003)

Example
𝐷 𝑥 = diag ,

-!.

BSREM1,2

Subset Gradient
∇Φ/ 𝑥 = 𝐴/0

𝑦/
𝐴/𝑥 + 𝑏/

− 1 −
𝛽
𝑀
∇𝑅(𝑥)



Stochastic Variance 
Reduction Algorithms
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Algorithm Properties
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Stochastic Algorithms

The gradient approximation !∇0 𝑥1 is computed using:
• The subset gradient ∇Φ0 𝑥1 , and 
• Previously computed subset gradients

o One historical subset gradient for each subset
o Requires the storage of M gradients

Each update has the approx. same computation cost as one subset 
gradient computation

Define an epoch as equivalent computation to a full forward and 
backward projection of the data

1Chambolle, et al (2018)



Three Stochastic Algorithms

SVRG (Stochastic Variance Reduction Gradient)
Johnson, R., & Zhang, T. (2013)
• An unbiased gradient estimate 
• Periodically* resets subset gradient history by recomputing

every subset gradient
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Stochastic Algorithms

SAG (Stochastic Average Gradient) 
Roux, N. Le, et.al. (2012), Schmidt, et. al. (2017)
• A low variance estimate of the gradient
• After each update, replace stored 

gradient for 𝑚)* subset with ∇Φ+ 𝑥,

SAGA
Defazio, A., el. al. (2014)
• An unbiased gradient estimate
• After each update, replace stored 

gradient for 𝑚)* subset with ∇Φ+ 𝑥,



Adaption to PET

𝑥;<= = 𝑃< 𝑥; + 𝛼;𝐷 𝑥; 0∇> 𝑥;
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Stochastic Algorithms

Subsets
Using the OS methodology1, but randomly 
selecting subset number at each update

Non-negativity constraint
Any voxel values < 0 after the 

update are projected to 0

Step Size
Constant 𝛼1=1

Preconditioner
𝐷 𝑥 = diag

𝑥 + 𝛿
𝐴51

𝛿 – is small constant

Stochastic Algorithms
SAG, SAGA, and SVRG

1Hudson et al. (1994)



Experiments
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Measured Data

XCAT Source 

Inserted 
lesion

XCAT Attenuation 

Simulated Phantom Data
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OpenGATE1 Monte Carlo simulations
Back-to-Back emission without radioactive decay

GE PET/CT Discovery 690 Scanner2

Source and attenuation map of a 3D XCAT3 torso 
phantom with, inserted lung lesion

Coincidence events recorded in list mode (~1.2B 
events), unlisted into non-TOF sinograms

STIR4: Scatter correction, Randoms correction (from 
delayed coincidence events), and Normalization

Using the STIR-GATE-Connection:
https://github.com/UCL/STIR-GATE-Connection

1Jan et al (2004), 2Bettinardi et al (2011), 3Segars et. al (2010), 4Thielemans et al (2012)

Experiments

https://github.com/UCL/STIR-GATE-Connection


Warm Starting
𝑥!"!# is computed by OSEM 24 subsets for 
1 epoch (24 updates)

Two reasons for warm starting the 
stochastic algorithms:

• Stochastic algorithms are sensitive to 
initial conditions

• Spatially variant penalty strength 𝜅̂ can be 
used for free1
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Experiments

1Tsai et al (2020)



Evaluation strategy
• Objective function concavity a unique solution !𝑥

exists

• Each image update is compared to !𝑥
Computed with:
• 1000 epochs of SAGA reconstruction
• Followed by a line search reconstruction

Evaluations:
• Visual Assessment
• Distance from convergence Δ% = ,"12, #

2, #
×100%

• Lesion ROI values
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Experiments



Results
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Global Performance (distance from converged image)
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Δ is a global image performance 
assessment

Δ% =
𝑥, − 9𝑥 (

9𝑥 (
×100%

Stochastic algorithms use 72 
subsets

SAG and SAGA initial 
performance is worse than 
BSREM’s

Performance after 5 epochs is 
significantly better than BSREM

Results

SAGA

SAG

SVRG



Lung Lesion ROI: Overview
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Comparison with the converged 
image

Stochastic algorithms use 72 subset

Some significant variations in the 
stochastic algorithms

The stochastic algorithm tend 
towards to 0% error before 20 
epochs

Results

SAGA
SAG

SVRG



SVRG 72 SubsetsSAGA 72 SubsetsSAG 72 SubsetsBSREM 24 Subsets

Animation of the Reconstructions
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Results

An epoch is an effective pass through all data



Investigating Subset 
Sampling Methodologies
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Subset Methodologies

Three Subset methods for subset 
construction and selection:

• Two are stochastic
• One is deterministic

1.  Randomised Batches
• At each iteration, a new subset (size J/M) is 

constructed as randomly selected projection 
angles

• No usage of structure
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Stochastic Subsets

Ordered Subsets 

Investigated Subset Methods
Structured methods

• Algorithm initialisation, construct M equally sized subsets
• Each subset are composed of equidistant projection angles
• Sequential subsets are construct from projection angles, with phase m
• Projection angles in a subset are as geometrically incoherent as possible from one 

another

2.  Stochastic Subsets
• At each iteration, randomly select a subset index m
• Some regard for projection angle coherence

3.  Ordered Subsets (Herman & Meyer, 1993/ Hudson & Larkin, 1994)
• Create a cyclical deterministic subset sequence to apply a subsets are as 

orthogonal as possible to the space generated by recently used subsets
• At each iteration, increment through the cyclical sequence
• Attempts to apply subsets that are as incoherent as possible to previously applied
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𝑀 = 14 Subsets 𝑀 = 40 Subsets

Application to BSREM 
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An epoch is an effective pass through the data set

Random Batches is not plotted as due to poor performance



SAGA SVRG
C∇3,/ 𝑥3 = ∇Φ/ 𝑥3 − 𝑔/ + 𝜂 C∇3,/ 𝑥3 = ∇Φ/ 𝑥3 − 𝑔/ + 𝜇̅

Application to Variance Reduction Methods
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𝑀 = 70 subsets
𝛼 = 1



SAG
Application to Variance Reduction Methods
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𝑀 = 70 subsets
𝛼 = 1

=∇,,+ 𝑥, =
∇Φ+ 𝑥, − 𝑔+

𝑀 + 𝜂

SAG has a higher dependency on 
the 𝜂 = ∑AB𝑔A term

Ordered Subsets does not 
demonstrate this behaviour with a 
smaller 𝛼



Closing Remarks
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Conclusion
• The SAG, SAGA, and SVRG algorithms are promising for PET image 

reconstructions 
o It appears that SVRG and SAGA perform better than SAG in most methods of 

assessment

o During early reconstruction performance comparable to BSREM with 12/24 subsets

o At later epochs (>5), the stochastic algorithms significantly outperform BSREM with 
no limit cycle behavior

• Future work will apply these algorithms to more datasets and investigating 
the impact of stochastic subset sampling on the reconstructions
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Any Questions?
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