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Introduction

This talk is mainly based on these papers:
» [Nitanda, NeurlPS’'14] Stochastic Proximal Gradient Descent with
Acceleration Techniques.
» [Allen-Zhu, JMLR'17] Katyusha: the first direct acceleration of
stochastic gradient methods.
P [Tang et al, NeurlPS'18] Rest-Katyusha: Exploiting the Solution’s
Structure via Scheduled Restart Schemes.

P [Scieur et al, NeurlPS'17] Nonlinear Acceleration of Stochastic
Algorithms.



Introduction

Imaging inverse problems and large-scale optimization

Many inverse problems involve solving convex composite
optimization tasks:

f(ai, b, x) + Ag(x) ¢, (1)

1 n
* in¢ F(x) =~
X" € argmin (x) n 2

1

Data fidelity term f(x) := 1 S°" | f(a;, b;, x), regularization g(x).

=



Introduction

Imaging inverse problems and large-scale optimization

In imaging inverse problems:

> x € RY — vectorized image,
A= [a1; ap; ...; ap] € R™9
— the forward model/measurements ,

b = [b1; by; ...; by] € R" — the observations.

b=Ax"+w, Aepr™d



Introduction

Imaging inverse problems and large-scale optimization

> Example: Total-Variation regularized least-squares
1 2
F(x) = o llAx = bll3 + Al Dx][s.

(D — discrete gradient operator.)



Introduction

n

= arngQIide {F(x) = f(x) +g(x)} f(x) = %Z fi(x)
i=1
(4)

» The number of data-sample n and dimension d can be large.

» Randomized optimization algorithms to rescue!!



Stochastic optimization

» Stochastic gradient algorithms typically pick one (or a few)
functions f; at random to calculate an unbiased estimate of
the true gradient at each iteration.

» Stochastic Gradient Descent (SGD):
xttl — proxy’ (Xt — ntvﬂ-(xt)) , (5)

» where the proximal operator is defined as:

1
ox(+) = arg min —||x — -||2 + g(x). 6
proxj() = arg min o [x -3+ g().  (6)



Stochastic gradient methods with variance-reduction

» Recent advance: by reducing the variance of Vf;(x") one
can achieve even faster convergence:

B GD
o
2
£ -
g SGD I—|_I_I_
E SGD + VR
Time '

> Representative examples : SVRG [Johnson & Zhang, 2013],
SAGA [Dafazio et al, 2014], SPDC [Zhang & Xiao, 2015], etc.



Optimal algorithms for regularized ERM

Gradient descent dx x log1

&\tlh

Accelerated gradient descent | dx n X log%

SAG(A), SVRG, SDCA, MISO | dx  (n+L) xlogl

. L 1
Accelerated versions dx (n+,/nyz) xlogg

For example, the Katyusha (accelerated SVRG) algorithm
[Allen-Zhu JMLR'17]

— Variance-reduced SGD with Nesterov-type acceleration achieves
worse-case optimal convergence.



AccProxSVRG algorithm of Nitanda [NeurlPS'14]

The inner loop of AccProxSVRG consists of 3 steps :

For k=0,1,2,....m

Vi1 = VI(X®) + Vii(xk) — VH(X%);

— variance reduced stochastic gradient
1/2L 1 )

Vi1 = Proxg ~ (xk — 37 Vit1);

— proximal gradient descent
Xk+1 = Vi1 + H0k(Yet1 — yi);
— Nesterov momentum step

(we denote the inner-loop as A)



Katyusha algorithm of Allen-Zhu [JMLR'17]

The inner loop of Katyusha consists of 4 steps :

For k=0,1,2,....m

_ lgs 1 .
X1 = Oz + x>+ (5 — H)yk,

— linear coupling momentum step
Vil = Vf()?s) + Vf,‘(Xk+1) - Vf,'()?s);
— variance reduced stochastic gradient

1
— 13 1 .
Ziy1 = Proxg” (zx — 357 Vit1):
1

3L 1 .
Yi+1 = Proxg" (xk — 3p Vit1);
— proximal gradient descent

(we denote the inner-loop as A)



Katyusha algorithm of Allen-Zhu [JMLR'17]

Algorithm Katyusha (x°, m, S, L)

Initialize: y? = Z0 = £0;
fors=0,...,5—1do
Set momentum parameter as 6 « 5%4 ,
Calculate a full gradient V£ (%X°),

Inner-loop:
(&L, st 25ty = A(RS, y5, 25,6, VF(R5), m)

end for

Output: £°




Katyusha acceleration of SVRG

P Use negative momentum tracing towards an anchoring point
to safe-guard Nesterov's momentum



Katyusha acceleration of SVRG

> Use negative momentum tracing towards an anchoring point
to safe-guard Nesterov's momentum

» Updating occasionally (every O(1) epochs) the anchoring
point



Katyusha acceleration of SVRG
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» Achieving acceleration :)



Exploiting the solution’s structure for faster algorithms

» Non-smooth g(+) injects prior information to ERM and often
enforce the solution to be structured, e.g. sparse, piece-wise
smooth, or low rank, etc.

x
Co Car

(2a) ERM with constraint  (b) Regularized ERM

g(+) == (")

> Can we exploit the solution’s structure to design even
faster optimization algorithms?



Restricted strong-convexity due to the structure

» With the structure inducing regularization such as /1, {51,
and TV semi-norm, f(-) often satisfies restricted
strong-convexity (RSC) w.r.t g(-):

F(x) = F(x") = (VE(x"), x = x") > %IIX — XI5 = 7g%(x = x*).
(7)
Vx € RY.
> Let x* € T, and the complexity of subspace T denoted by
(7).
» We denote the effective RSC parameter as
fe =5 — 3270%(T),

F(x) — F(x*) > jic||x — x*||3 — residuals, (8)



Exploit the structure via restart

An illustrative example for restarting the momentum-based
algorithms
» FISTA algorithm solve ERM at a rate of
4L 0_ |2
F(xk) _ F(X*) < ||Xk2X lI5
» If F(-) is u-strongly convex, then:

F(x) = F(x*) = pllx = x*3

(9)



Exploit the structure with restart

» Then if we run k = [4\/L/p], we have:

IN

XO - x*

(10)

F() = F(x)

> Hence if we restart FISTA every [4,/L/u] iteration
—only k > (4\/%1 Iog4% iterations are needed to make
F(x¥) — F(x*) < 6.

» Without restart, FISTA needs % iterations.



Exploit the structure via restart
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Figure: Empirical performance illustration of FISTA, periodic restarted
FISTA (with exact knowledge of the strong-convexity parameter 1) and
adaptive restarted-FISTA (based on enforcing monotonicity) for

minimizing strongly-convex functions.

> We then leverage the restart scheme to accelerate Katyusha

algorithm under RSC framework



Structure-Adaptive Accelerated Variance-Reduced SGD

Algorithm Rest-Katyusha (x°, ¢, So, 3, T, L)

Initialize: m=2n, S = {5 32 + 24L-‘ ;

miic

x! = Katyusha (x°, m, So, L)

fort=1,...,T do
xtt1 = Katyusha (xt,m, S, L)
end for

Output: x'*1

» Convergence analysis: O (n + ,//’Ié) Iog% gradient

complexity — accelerated linear convergence



Structure-Adaptive Accelerated Variance-Reduced SGD

Algorithm Adaptive Rest-Katyusha (x°, pi0, So, 8, T, L)

Initialize: ~m = 2n; Initial restart period S = {ﬂ 32+ 12L—‘

nio

x! = Katyusha (x°, m, S, L)

Q(x") = arg miny 5 [x — x5 + (VF(x"), x — x') + g(x).
fort=1,..., T do
xt*t1 = Katyusha (xf, m, S, L)

Q(x'*1) = argmins §[lx — X8 + (VF(x*1), x = x**) + g(x).
if [|Q(x) = xHI3 < Z[|Q(xF) — x5

then o < 2uo, else po « po/2. S = [6 32+ 12L-‘

npig
end for




Numerical experiments

» We test our algorithms’ performance on LASSO problem:

1
- in {F(x) == - I1Ax = b3 + Alix|l }
€ arg min { F(x) i= o [Ax — bl + Ml

(11)

Figure: Lasso experiments on Reged dataset (n, d) = [500, 999]
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Numerical experiments
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Figure: X-ray CT image reconstruction experiment with a smooth
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Nonlinear Acceleration of Gradient-based Methods

1. Run a simple algorithm, e.g. gradient descent
2. "Guess" the solution using an extrapolation algorithm
3. Enjoy! ®




Nonlinear Acceleration of Gradient-based Methods

Reegularized Nonlinear Acceleration (RNA)

Input: Sequence {xo, ..., Xk+1}, parameter A > 0

1: Form R = [ry, ..., k], where r; = xj11 — X; O(dk)
2: Compute RTR O(dk?)
3: Compute ¢* = {RTREA)U O(k%)

T 1T(RTR+A)-11

Output: Return xexr = Zf'(:o crxj = x*

[Scieur et al, NeurlPS'16]



Nonlinear Acceleration of Gradient-based Methods

Algorithmic complexity. In practice, k < d. Complexity is O(d)!
Sparse input. Complexity O(k?s). Sparse output: ||Xexer||o < ks.

Matlab/Python complexity. Only 5 lines of code!

Theorem (Scieur, d’Aspremont and Bach, 2016)

Asymptotic Acceleration Let |xo — x*|| — 0 and X well chosen,
e = %Il < O (1 = VAo = x*Il)  (Optimal)
(Non-asymptotic bounds hold as well)

The gradient method on smooth and strongly convex functions
meets the assumptions



Nonlinear Acceleration of Gradient-based Methods

Dataset: Madelon (2000 data points, 500 features, £ = 1079),
N
Fw) = rliwlB + 3 log(1+ exp(y X w).
i=1

Accuracy

== Gradient Method
=& Nesterov's method + backtracking
== RNA + Gradient method
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Nonlinear Acceleration of SVRG/SAGA. [Scieur et al,
NeurlPS'17]
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FIGURE 4. Optimization of quadratic loss (Top) and logistic loss (Bottom) with several
algorithms, using the Sid dataset with bad conditioning. The experiments are done in
Matlab. Left: Error vs epoch number. Right: Error vs time. =
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