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1) Motivation: Examples of Multi-Modality
Imaging (Why?)

2) Mathematical Models for Multi-Modality
Imaging (How?)

3) Application Examples: Remote Sensing
and Medical Imaging (1 + 1 > 2?)



Motivation: Examples of Multi-Modality Imaging



Multi-Modality Imaging Examples

PET-MR

PET-MR (and PET-CT, SPECT-MR, SPECT-CT)

Combine anatomical (MRI)
and functional (PET) infor-
mation

7 clinical scanners in UK

Currently images are just
overlayed

Challenge: Reduce scan-
ning time, increase image
quality, lower dose

image: Sheth and Gee, 2012



Multi-Modality Imaging Examples

PET-MR Multi MRI

Multi-Sequence MRI
pre-contrast
T1-weighted (a),
dual-echo T2 (b, c)
post-contrast
2D T2 FLAIR (d, e),
T1-weighted (f)

Standardized
MRI protocol
for multiple sclerosis

6 scans, total 30 min
Rovira et al., Nature Reviews Neurology, 2015

Challenge: Reduce scanning time



Multi-Modality Imaging Examples

PET-MR Multi MRI Spectral CT

Spectral CT

CT spectral CT

images:
Shikhaliev and Fritz, 2011

material decomposition

Acquisition: energy resolved measurements

Combination: material information

Challenge: Low dose / high noise in some channels



Multi-Modality Imaging Examples

PET-MR Multi MRI Spectral CT
Hyper

+ optical

Image fusion in remote sensing

Acquisition: low resolution hyperspectral data (127 channels,
1m × 1m) and high resolution photograph (0.25m × 0.25m)
acquired on plane or satellite, e.g. by NERC Airborne
Research & Survey Facility

Challenge: get best of both worlds—high spatial and
spectral resolution



Multi-Modality Imaging Examples

PET-MR Multi MRI Spectral CT
Hyper

+ optical
X-ray

+ optical

X-ray separation for art restauration Deligiannis et al. 2017

Acquisition: photographs and x-ray images

Challenge: separate the x-rays of the doors



Fairly Large Field
I Regular sessions at major conferences: Applied Inverse

Problems, SIAM Imaging
I Symposium in Manchester in 3-6 Nov 2019
I Special Issue in IOP Inverse Problems

I Collaborative Software Projects: CCPi (Phil Withers) and
CCP PETMR



Mathematical Models for Multi-Modality Imaging



Image Reconstruction

Variational Approach:

u∗ ∈ arg min
u

{
D(Au, b) + αJ (u) + ıC (u)

}
A forward operator (often but not always linear),

e.g. Radon transform

D data fit, e.g. least-squares D(Au, b) = 1
2‖Au − b‖2,

Kullback–Leibler divergence
D(Au, b) =

∫
Au − b + b log(b/Ay)

J regularizer, e.g. total variation
J (u) = TV(u) :=

∑
i |∇ui | Rudin et al., 1992

ıC constraints, e.g. nonnegativity

How to include information from other modalities?
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Modelling Structural Similarity

Definition: The Weighted Total Variation (wTV) of u is

dTV(u) :=
∑
i

wi‖∇ui‖, 0 ≤ wi ≤ 1

See e.g. Ehrhardt and Betcke ’16

I If c > 0, c < wi , then c TV ≤ wTV ≤ TV.

I If wi = 1, then wTV = TV.

I wi = η
‖∇vi‖η , ‖∇vi‖2η = ‖∇vi‖2 + η2, η > 0
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Modelling Structural Similarity

〈∇u,∇v〉 = cos(θ)|∇u||∇v |

Definition: Two images u and v are said to have parallel level
sets or are structurally similar (denoted by u ∼ v) if θ = 0 or
θ = π, i.e.

∇u ‖ ∇v i.e. ∃ α such that ∇u = α∇v .

I Dominant idea in this field
I Parallel Level Set Prior, e.g. Ehrhardt and Arridge ’14

I Directional Total Variation, e.g. Ehrhardt and Betcke ’16

I Total Nuclear Variation, e.g. Knoll et al. ’16

I Coupled Bregman iterations, e.g. Rasch et al. ’18

I Others are: joint sparsity (e.g. wTV), joint entropy, ...
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Directional Total Variation
I Note that if ‖∇v‖ = 1, then

u ∼ v ⇔ ∇u − 〈∇u,∇v〉∇v = 0

Definition: The Directional Total Variation (dTV) of u is

dTV(u) :=
∑
i

‖[I− ξiξTi ]∇ui‖, 0 ≤ ‖ξi‖ ≤ 1

Ehrhardt and Betcke ’16, related to Kaipio et al. ’99, Bayram and Kamasak ’12

I If c > 0, ‖ξi‖2 ≤ 1− c , then c TV ≤ dTV ≤ TV.
I If ξi = 0, then dTV = TV.
I ξi = ∇vi

‖∇vi‖η , ‖∇vi‖2η = ‖∇vi‖2 + η2, η > 0

0π



Application Examples



Multi-Modality Imaging Examples

PET-MR Multi MRI Spectral CT
Hyper

+ optical
X-ray

+ optical

Multi-Sequence MRI
Ehrhardt and Betcke, SIAM J. Imaging Sci., vol. 9, no. 3, pp. 1084–1106, 2016.

Joint work with:
Computer Science: M. Betcke (UCL)



Multi-Sequence MRI Results

gr. truth

side info

no prior TV

wTV dTV

sampling
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Quantitative Results

T1 T2
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no prior

TV

wTV

dTV

mean

median

I Range (min, max), mean and median over 12 data sets



Multi-Modality Imaging Examples

PET-MR

PET-MR
Ehrhardt et al., Phys. Med. Biol. (in press), 2019

Ehrhardt et al., Proceedings of SPIE, vol. 10394, pp. 1–12, 2017

Joint work with:
Mathematics: A. Chambolle (École Polytechnique, France), P. Richtárik
(KAUST, Saudi Arabia), C. Schönlieb (Cambridge)
Medical Physics: P. Markiewicz (UCL),
Neurology: J. Schott (UCL)



PET-MR Results
Reconstruction model:

min
u

{
KL(Au + r ; b) + λJ (u) + ı≥0(u)

}
Total Variation, J = TV

Directional Total Variation (using MRI), J = dTV
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Multi-Modality Imaging Examples

PET-MR Multi MRI Spectral CT
Hyper

+ optical
X-ray

+ optical

Image fusion in remote sensing
Bungert et al., Inverse Probl., vol. 34, no. 4, p. 044003, 2018

Joint work with:
Mathematics: L. Bungert (Erlangen, Germany), R. Reisenhofer (Vienna,
Austria), J. Rasch (Berlin, Germany), C. Schönlieb (Cambridge),
Biology: D. Coomes (Cambridge)



Standard regularization versus image fusion

Reconstruction model:

min
u

{
1
2‖S(u ∗ k)− v‖2 + λJ (u) + ı≥0(u)

}
data standard, J = TV fusion, J = dTV

data standard, J = TV fusion, J = dTVdata standard, J = TV fusion, J = dTVdata standard, J = TV fusion, J = dTV



Blind versus non-blind image fusion

Blind

reconstruction model:

min
u

,k

{
1
2‖S(u ∗ k)− v‖2 + λJ (u) + ı≥0(u)

+ ıS(k)

}
data fusion

blind fusion

data fusion

blind fusion

data fusion

blind fusion

data fusion

blind fusion



Blind versus non-blind image fusion

Blind reconstruction model:

min
u,k

{
1
2‖S(u ∗ k)− v‖2 + λJ (u) + ı≥0(u) + ıS(k)

}
data fusion blind fusion

data fusion blind fusiondata fusion blind fusiondata fusion blind fusion



Conclusions and Outlook

Summary:

I Multi-Modality Imaging examples:
PET-MR, multi-sequence MRI, spectral
CT, Hyper + optical,
X-ray + optical

I Mathematical Models to exploit
synergies between modalities

I Examples: indeed often 1 + 1 > 2!

Future:

I Which modalities complement each
other best?

I Multi-modality imaging can help to
lower dose, increase resolution ...

I Expertise in image / video processing,
compressed sensing, machine learning ...

independent

synergistic


