Accelerated Convergent Motion Compensated Image Reconstruction

Claire Delplancke

University of Bath

IEEE Medical Imaging Conference 2021

Joint work with Kris Thielemans (University College London) and Matthias J. Ehrhardt (University of Bath)

Claire Delplancke (University of Bath)

Accelerated Convergent MCIR

Motivation

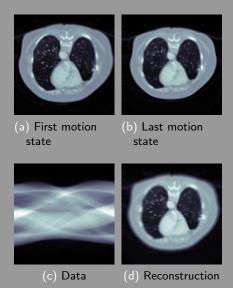


Figure: Motion in the subject introduces artefacts in the reconstruction

Claire Delplancke (University of Bath)

Accelerated Convergent MCIR

Proof of concept for a randomized algorithm performing Motion Compensated Image Reconstruction (MCIR) which...

- is faster than the non-randomized counterpart,
- is provenly convergent.

1 MCIR: framework

2 Proposed algorithm and theoretical results

3 Numerical experiments

Claire Delplancke (University of Bath)

Accelerated Convergent MCIR

IEEE MIC 2021 2 / 13

1 MCIR: framework

2) Proposed algorithm and theoretical results

3 Numerical experiments

Claire Delplancke (University of Bath)

Accelerated Convergent MCIR

IEEE MIC 2021 2 / 13

Framework

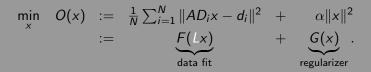
Data divided over N gates:

 $d_i \approx$ Di $x, 1 \leq i \leq N.$ A forward op. displacement op. $\rightarrow D_i$ $\searrow AD_i$ $\downarrow A$ $\downarrow A$

Claire Delplancke (University of Bath)

Accelerated Convergent MCIR

With Gaussian noise and I_2^2 regularizer:



Convex setting.

Claire Delplancke (University of Bath)

Accelerated Convergent MCIR

IEEE MIC 2021 4 / 13

Primal-Dual Hybrid Gradient (PDHG) algorithm

(also known as Chambolle-Pock algorithm)

Iterate

-
$$x^{k+1} = \operatorname{prox}_{\tau G}(x^k - \tau L^* \overline{y}^k)$$

- $y^{k+1} = \operatorname{prox}_{\sigma F^*}(y^k + \sigma L x^k)$
- $\overline{y}^{k+1} = y^{k+1} + \theta_k(y^{k+1} - y^k)$

- $\rightarrow\,$ convergent algorithm
- \rightarrow each iteration requires the evaluation of $L = (AD_1, \dots, AD_N)$ and L^* : the computational cost scales linearly with the number of gates.

1) MCIR: framework

2 Proposed algorithm and theoretical results

3) Numerical experiments

Claire Delplancke (University of Bath)

Accelerated Convergent MCIR

IEEE MIC 2021 5 / 13

Randomized algorithm

- Idea use only one gate, picked at random, for each iteration.
- How? use Stochastic Primal-Dual Hybrid Gradient (SPDHG) algorithm [Chambolle, Ehrhardt, Richtárik, Schönlieb, 2018]

$$\begin{array}{rcl} \min_{x} & O(x) & := & \frac{1}{N} \sum_{i=1}^{N} \|AD_{i}x - d_{i}\|^{2} & + & \alpha \|x\|^{2} \\ & = & \sum_{i=1}^{N} F_{i}(L_{i}x) & + & G(x). \end{array}$$

Randomized algorithm

- Idea use only one gate, picked at random, for each iteration.
- How? use Stochastic Primal-Dual Hybrid Gradient (SPDHG) algorithm [Chambolle, Ehrhardt, Richtárik, Schönlieb, 2018]

$$\begin{array}{rcl} \min_{x} & O(x) & := & \frac{1}{N} \sum_{i=1}^{N} \|AD_{i}x - d_{i}\|^{2} & + & \alpha \|x\|^{2} \\ & = & \sum_{i=1}^{N} F_{i}(L_{i}x) & + & G(x). \end{array}$$

Convex setting

SPDHG

Iterate

$$-x^{k+1} = \operatorname{prox}_{\tau G}(x - \bar{z}^k)$$

- Pick a gate i with probability p_i

-
$$y_i^{k+1} = \operatorname{prox}_{\sigma_i F_i^*}(y_i^k + \sigma_i L_i x^k)$$
 and $y_j^{k+1} = y_j^k$ for $j \neq i$

$$- \delta^{k} = L_{i}^{*}(y_{i}^{k+1} - y_{i}^{k}) - \bar{z}^{k+1} = \bar{z}^{k} + (1 + \theta_{k}p_{i}^{-1})\delta^{k}$$

SPDHG

Iterate

$$-x^{k+1} = \operatorname{prox}_{\tau G}(x - \bar{z}^k)$$

- Pick a gate i with probability p_i

-
$$y_i^{k+1} = \text{prox}_{\sigma_i F_i^*}(y_i^k + \sigma_i L_i x^k)$$
 and $y_j^{k+1} = y_j^k$ for $j \neq i$

$$- \delta^{k} = L_{i}^{*}(y_{i}^{k+1} - y_{i}^{k})$$

$$-\bar{z}^{k+1} = \bar{z}^k + (1+\theta_k p_i^{-1})\delta^k$$

- $\rightarrow\,$ convergent algorithm
- \rightarrow each iteration requires the evaluation of only one $L_i = AD_i$ and L_i^* : the computational cost scales constantly with the number of gates.

Theoretical rates of convergence

In the strongly convex - strongly smooth setting, PDHG and SPDHG converge linearly with known optimal per epoch rates [Chambolle et al., 2011], [Chambolle et al., 2018]:

$$\|x_{\mathsf{PDHG}}^{K} - x^*\|^2 \le C(r_N^{\mathsf{PDHG}})^K$$
$$\mathbb{E}\left[\|x_{\mathsf{SPDHG}}^{K} - x^*\|^2\right] \le \tilde{C}(r_N^{\mathsf{SPDHG}})^K.$$

Theoretical rates of convergence

In the strongly convex - strongly smooth setting, PDHG and SPDHG converge linearly with known optimal per epoch rates [Chambolle et al., 2011], [Chambolle et al., 2018]:

$$\|x_{\mathsf{PDHG}}^{K} - x^*\|^2 \le C(r_N^{\mathsf{PDHG}})^K$$
$$\mathbb{E}\left[\|x_{\mathsf{SPDHG}}^{K} - x^*\|^2\right] \le \tilde{C}(r_N^{\mathsf{SPDHG}})^K.$$

Theorem

For N gates and well-chosen step-sizes, it stands that:

$$r_{N}^{PDHG} = 1 - \frac{2}{1 + \sqrt{1 + \frac{1}{\alpha N} \|(L_{1}, \dots, L_{N})\|^{2}}},$$
$$r_{N}^{SPDHG} = \left(1 - \frac{2}{N\left(1 + \sqrt{1 + \frac{1}{\alpha N} \max_{i} \|L_{i}\|^{2}}\right)}\right)^{N}$$

Claire Delplancke (University of Bath)

Theoretical rates of convergence

For a moderately conditioned problem such that $\kappa = \frac{\|A\|^2}{\alpha} \ge 16$,

$$r_N^{\mathrm{SPDHG}} pprox \left(1 - rac{2}{N\left(1 + \sqrt{1 + rac{\kappa}{N}}
ight)}
ight)^N < 1 - rac{2}{1 + \sqrt{1 + \kappa}} pprox r_N^{\mathrm{PDHG}}.$$

IEEE MIC 2021

1 MCIR: framework

2) Proposed algorithm and theoretical results

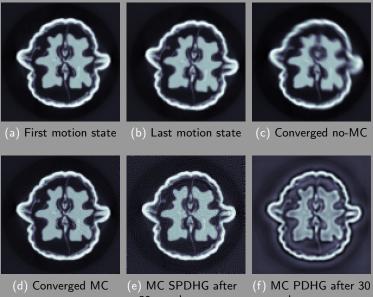
3 Numerical experiments

Claire Delplancke (University of Bath)

Accelerated Convergent MCIR

IEEE MIC 2021 9 / 13

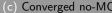
Numerical application: rigid motion (N = 20 gates)



30 epochs Accelerated Convergent MCIR epochs IEEE MIC 2021

Numerical application: non-rigid motion (N = 10 gates)

(a) First motion state (b) Last motion state (c) Converged no-MC



(e) MC SPDHG after 30 epochs Accelerated Convergent MCIR (f) MC PDHG after 30 epochs IEEE MIC 2021

Numerical application: convergence rates

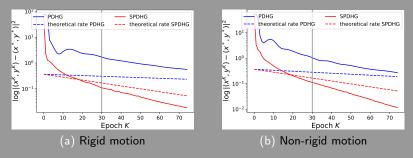


Figure: SPDHG's linear convergence is faster than PDHG's

Claire Delplancke (University of Bath) Accelerated Conver

IEEE MIC 2021 12 / 13

Contributions

We proposed a randomized algorithm for Motion Compensated Image Reconstruction with the following characteristics \dots

$\rightarrow\,$ is provenly convergent,

- $\rightarrow\,$ requires the same computational effort than the non-motion compensated reconstruction per iteration,
- \rightarrow [in proof-of-concept setting]
 - $\rightarrow\,$ a theoretical speed-up is proved on linear rates
 - $\rightarrow\,$ a practical speed-up is observed on synthetic experiments.