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Motivation

(a) First motion
state

(b) Last motion
state

(c) Data (d) Reconstruction

Figure: Motion in the subject introduces artefacts in the reconstruction
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Goal

Proof of concept for a randomized algorithm performing Motion
Compensated Image Reconstruction (MCIR) which...

is faster than the non-randomized counterpart,

is provenly convergent.
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Framework
Data divided over N gates:

di ≈ A︸︷︷︸
forward op.

Di︸︷︷︸
displacement op.

x , 1 ≤ i ≤ N.

→
Di

↓ A ↘ ADi ↓ A
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Variational model

With Gaussian noise and l22 regularizer:

min
x

O(x) := 1
N

∑N
i=1 ‖ADix − di‖2 + α‖x‖2

:= F (Lx)︸ ︷︷ ︸
data fit

+ G (x)︸ ︷︷ ︸
regularizer

.

Convex setting.
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Primal-Dual Hybrid Gradient (PDHG) algorithm

(also known as Chambolle-Pock algorithm)

Iterate
- xk+1 = proxτG (xk − τL∗ȳk)

- yk+1 = proxσF∗(yk + σLxk)

- ȳk+1 = yk+1 + θk(yk+1 − yk)

→ convergent algorithm
→ each iteration requires the evaluation of L = (AD1, . . .ADN) and L∗:

the computational cost scales linearly with the number of gates.
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Randomized algorithm

Idea use only one gate, picked at random, for each iteration.
How? use Stochastic Primal-Dual Hybrid Gradient (SPDHG)
algorithm [Chambolle, Ehrhardt, Richtárik, Schönlieb, 2018]

min
x

O(x) := 1
N

∑N
i=1 ‖ADix − di‖2 + α‖x‖2

=
∑N

i=1 Fi (Lix) + G (x).

Convex setting
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SPDHG

Iterate
- xk+1 = proxτG (x − z̄k)

- Pick a gate i with probability pi

- yk+1
i = proxσiF

∗
i

(yki + σiLix
k) and yk+1

j = ykj for j 6= i

- δk = L∗i (yk+1
i − yki )

- z̄k+1 = z̄k + (1 + θkp
−1
i )δk

→ convergent algorithm
→ each iteration requires the evaluation of only one Li = ADi and L∗i :

the computational cost scales constantly with the number of gates.
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Theoretical rates of convergence
In the strongly convex - strongly smooth setting, PDHG and SPDHG
converge linearly with known optimal per epoch rates [Chambolle et al.,
2011], [Chambolle et al., 2018]:

‖xKPDHG − x∗‖2 ≤ C (rPDHGN )K

E
[
‖xKSPDHG − x∗‖2

]
≤ C̃ (rSPDHGN )K .

Theorem
For N gates and well-chosen step-sizes, it stands that:

rPDHG
N = 1− 2

1 +
√

1 + 1
αN ‖(L1, . . . , LN)‖2

,

rSPDHG
N =

1− 2

N
(
1 +

√
1 + 1

αN maxi ‖Li‖2
)


N

.
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Theoretical rates of convergence

For a moderately conditioned problem such that κ = ‖A‖2
α ≥ 16,

rSPDHGN ≈

(
1− 2

N
(
1 +

√
1 + κ

N

))N

< 1− 2
1 +
√
1 + κ

≈ rPDHGN .
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Numerical application: rigid motion (N = 20 gates)

(a) First motion state (b) Last motion state (c) Converged no-MC

(d) Converged MC (e) MC SPDHG after
30 epochs

(f) MC PDHG after 30
epochs

Figure: Rigid motion
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Numerical application: non-rigid motion (N = 10 gates)

(a) First motion state (b) Last motion state (c) Converged no-MC

(d) Converged MC (e) MC SPDHG after
30 epochs

(f) MC PDHG after 30
epochs

Figure: Non-rigid motion
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Numerical application: convergence rates

(a) Rigid motion (b) Non-rigid motion

Figure: SPDHG’s linear convergence is faster than PDHG’s
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Contributions

We proposed a randomized algorithm for Motion Compensated Image
Reconstruction with the following characteristics . . .

→ is provenly convergent,
→ requires the same computational effort than the non-motion

compensated reconstruction per iteration,
→ [in proof-of-concept setting]

→ a theoretical speed-up is proved on linear rates
→ a practical speed-up is observed on synthetic experiments.
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